2

2

1

2

2

1

Mark schemes

Q1.

(a) (lons are) point charges

OF

(lons are) perfect spheres

OR

No covalent character

Do not accept atoms or molecules in answer Allow no polarisation of ions

(b) $2 \text{ Na}^+(g) + 2 e^- + O(g)$

$$2 \text{ Na(s)} + \frac{1}{2} O_2(g)$$

(c) $-416 + x = 248 + (2 \times 109) + (2 \times 494) - 142 + 844$

enthalpy of lattice dissociation = (+) 2572 (kJ mol⁻¹) -2572 (kJ mol⁻¹) scores 1 mark

(d) O repels the electron (being added)

Allow negative ion repels electron

(e) Oxide ions

M1 have higher (negative) charge

OR

smaller size

OR

higher charge density/higher charge:size ratio (than chloride ions).

M2 stronger attraction between (O²⁻ and Na⁺/oppositely charged) ions Ignore electronegativity

(f) Enthalpy of solution = 771 - 406 - 364

(g) It reacts with water

OR

It reacts to form (a solution of) NaOH

Do not accept - It dissolves in water

(h) **M1** T =
$$\Delta H/\Delta S$$

M2 T =
$$\frac{411}{90.1 \times 10^{-3}}$$
 = 4562 (K)

[14]

3

Q2.

(a) (Enthalpy change = lattice dissociation energy + hydration energies of ions)

M1 Enthalpy change = $+2237 - (2 \times 364) - 1650$

$$M2 = -141 \text{ kJ mol}^{-1}$$

2

(b) Temperature goes up/increases

Allow answer consequential on (a)

1

(c) M1 fluoride ions/F- (ions) are smaller

OR

M1 F⁻ has a higher charge density

Do not accept fluorine atoms/ions are smaller

M2 stronger <u>attraction</u> (of fluoride ion) to δ + on H/ electron deficient H (in water)

M2 do not accept ionic bonds

Do not accept more energy to break bonds

Do not accept stronger attraction to H⁺

Ignore electronegativity and shielding

2

 $Ca^{2+}(g) + 2e^{-} + 2Cl(g)$ $Ca^{2+}(g) + 2e^{-} + Cl_{2}(g)$ $Ca^{2+}(g) + 2e^{-} + Cl_{2}(g)$ $Ca^{2+}(g) + e^{-} + Cl_{2}(g)$ $Ca(g) + Cl_{2}(g)$ $Ca(s) + Cl_{2}(g)$ $CaCl_{2}(s)$

2

(e)
$$-795 = 193 + 590 + 2^{nd} IE + (121 \times 2) + (-364 \times 2) - 2237$$

= (+) 1145 (kJ mol⁻¹)
 $M1: Allow - 795 = -1940 + 2^{nd} IE$

(f) Electron removed from a positive charge/ion

OR

Electron removed from smaller ion/electron removed closer to nucleus

OR

Stronger attraction between same number of protons and fewer electrons

This question is marked using levels of response. Refer to the (g)

Mark Scheme Instructions for Examiners for guidance on how to mark this question.	
Level 3	All stages are covered and each stage is generally correct and virtually complete.
5-6 marks	Answer is communicated coherently and shows a logical progression from stage 1 to stage 2 and stage 3
Level 2	All stages are covered but stage(s) may be incomplete or may contain inaccuracies OR
3-4 marks	two stages are covered and are generally correct and virtually complete.
	Answer is mainly coherent and shows progression from stage 1 to stage 2 and/or stage 3.
Level 1 1-2 marks	Two stages are covered but stage(s) may be incomplete or may contain inaccuracies OR
	only one stage is covered but is generally correct and virtually complete.
	Answer includes isolated statements and these are presented in a logical order.
0 marks	Insufficient correct chemistry to gain a mark.

Stage 1 comparing values from perfect ionic model

1a Value for CaCl₂ is larger OR Values for KCl and AgCl are similar OR Values for CaCl₂ > AgCl > KCl

1b Ca²⁺ has a larger charge/ is a smaller ion OR

Ag* and K* have smaller charge or larger ions

1c CaCl₂ has stronger ionic bonds or stronger attraction between + and - ions (Ca²⁺and Cl⁻) OR

AgCl and KCl have weaker ionic bonds or weaker attraction between + and - ions (Ag^+/K^+ and Cl^-)

Stage 2 similarities in the perfect ionic model and Born-Haber cycle values

2a CaCl₂ has similar values (between the perfect ionic model and Born-Haber cycle)

2b KCl has similar values (between the perfect ionic model and Born-Haber cycle)

2c CaCl₂ **and** KCl have (almost) perfect ionic bonding or + ions are point charges/(perfectly) spherical

Stage 3 difference in the perfect ionic model and Born-Haber cycle values

3a AgCl has larger difference in values (between the perfect ionic model and Born-Haber cycle)

3b AgCl contains (some) covalent character

3c Ag⁺ more polarising/distorts electron cloud more

1

1

1

Q3.

(a) The enthalpy change / ΔH when one mole of a (solid) ionic compound

Ignore standard states / conditions

Allow heat change at constant pressure when...

Ignore heat change (alone) / energy change

dissociates (fully) into gaseous ions

M2 Allow suitable equation with state symbols for ions

Not one mole of gaseous ions

(b)

Allow + water or +aq

M1 = cycle (3 'corners' with formulae and state symbols and suitable arrows)

Allow equivalent Born-Haber style energy cycle **Not** ecf to M2 and M3 from incorrect cycle

LE = 26 + 307 + 314

M2 = working e.g. 26 = LE - 307 - 314

= (+)647

M3 = answer (+)647 gets 3/3 if M1 given or 2/3 if not

-647 = 2/3 if M1 given or 1/3 if not

+595 / -595 = 2/3 if M1 given or 1/3 if not

-621/+621 = 1/3 if M1 given

Not ecf for M3 from incorrect expression in M2

1

```
(c) (q = mc\Delta T =) 25.0 \times 4.18 \times (20.2 - 12.2) OR 25.0 \times 4.18 \times 8 (= 836 \text{ (J) or } 0.836 \text{ (kJ)})
```

Not if m = 29

Ignore sign of q

 $4.00 \text{ g NH}_4\text{NO}_3 = 4.00/80 \text{ OR } 0.0500 \text{ mol}$

 $\Delta H^{\text{\&ohbar}}$; soln = 836/0.05 = 16720 = (+)16.7(2) kJ mol⁻¹

Allow ecf from M1 and/or from M2

$$-16.7(2) = 2/3$$

$$+19.4 = 2/3$$
 (using $m = 29$ in M1)

$$-19.4 = 1/3$$

$$+2.68 = 2/3$$

$$-2.68 = 1/3$$

$$+587 \text{ or } +588 = 2/3$$

$$-587 \text{ or } -588 = 1/3$$

Allow 2 sig figs or more

(d) $(2 \times 0.1/8) \times 100 = 2.5\%$

Allow ecf from ΔT in (c)

(e) use a larger mass/amount of NH₄NO₃ / solid

Marking points are independent

Allow smaller volume of water / less water

Allow use more NH₄NO₃

Not larger volume of water

Ignore higher concentration (of NH₄NO₃)

Ignore any references to changing apparatus e.g.

insulation

so temperature change/decrease is greater

OR final temperature is lower

Allow temperature increase is greater

Not final temperature is higherr

1

1

(f) heat gain (from the surroundings) / incomplete dissolvingg

Allow incomplete reaction

Allow thermal energy gain

Not heat loss

Ignore energy gain

Ignore references to mistakes in method

(g)
$$\Delta S = (113 + 146) - 151 = +108 (J K^{-1} mol^{-1})$$

1

1

$$\Delta G = \Delta H - T\Delta S$$
 OR 26 – (298 × 108 × 10⁻³)

Allow ecf 26 – $(298 \times M1 \times 10^{-3})$

Allow ecf $26 - (298 \times M1)$

Allow M2 for 26000 - (298 × 108)

Allow M2 for 26 – (298 × 108)

$$\Delta G$$
 = -6.184 / -6.18 / -6.2

-32158 = M1 and M2

-32.2 = M1 and M2

-6184 = M1 and M2

(+)58.2 = M2 and M3 (ecf if -108 for M1)

1

negative value for ΔG indicates reaction is feasible/spontaneous

Allow positive value for ΔG indicates reaction is NOT feasible/spontaneous

Allow < 0 or > 0 as appropriate

M4 is standalone

1

(h) Converting ΔH into J **OR** ΔS into kJ

1

$$(T = \Delta H/\Delta S = 123/144 \times 10^{-3} \text{ OR } 123000/144) = 854(.1666666) \text{ (K)}$$

0.854 (K) = 1/2

0.00117 (K) = 1/2 (calculation upside down)

2SF minimum

[18]